

RiboPipe: An assembly and analysis pipeline for sequencing data

RiboPipe is toolkit designed for automating the assembly,
quality control, and analysis of ribosome profiling and other single-end RNAseq
datasets. It is intended to be easy to use for bench and computational biologists
and is quick to use out of the box.

RiboPipe is developed by Jordan Berg in the Rutter Lab [https://biochem.utah.edu/rutter/index.html]
@ the University of Utah [https://www.utah.edu/], along with other collaborators.

Table of contents

	Overview

	Installation

	Quickstart

	General Usage

	Advanced Usage

Tutorial

Video walkthrough coming soon! See the Quickstart guide for more information.

Important notes

See the Important File Naming Conventions heading of the General Usage page for more information.

Performance

Coming soon

License

RiboPipe is freely available under a GNU General Public License (v3.0).

Questions?

If you have questions, requests, or bugs to report, please use the Github issues forum [https://github.com/RiboPipe/ribopipe/issues].

Overview

Background

Ribosome profiling [https://en.wikipedia.org/wiki/Ribosome_profiling] utilizes
Next Generation Sequencing to provide a detailed picture of the protein translation
landscape within cells. Cells are lysed, translating ribosomes are isolated, and
the ribosome protected mRNA fragments are integrated into a sequencing library.
The library is then sequenced and raw data (often in the form of
.fastq [http://support.illumina.com/content/dam/illumina-support/help/BaseSpaceHelp_v2/Content/Vault/Informatics/Sequencing_Analysis/BS/swSEQ_mBS_FASTQFiles.htm]
or .txt files) is generated. This pipeline is flexibly designed to be able to
process and perform preliminary analyses on SE (single-end) short (<= 100 bp)
read raw sequence data.

See this paper [https://www.ncbi.nlm.nih.gov/pubmed/28579404]
for a recent discussion and detailed protocol of the technique.

[image: ../_images/riboseq_overview.png]

Installation

MacOS Installation

See local_install.sh in the resources [https://github.com/RiboPipe/ribopipe/tree/master/resources] folder for interactive script.

	RiboPipe requires use of command line. Execute the following lines of code in Terminal [https://www.imore.com/how-use-terminal-mac-when-you-have-no-idea-where-start] (on Mac, open Spotlight and type ‘Terminal’):

	Install python3, wget, git, and git-lfs if not already done. You can check in command line by typing in the name of the package and checking if your system recognizes the package name.

$ sh -c "$(curl -fsSL https://raw.githubusercontent.com/Linuxbrew/install/master/install.sh)"
$ echo "export PATH='$(brew --prefix)/bin:$(brew --prefix)/sbin'":'"$PATH"' >> ~/.bash_profile
$ brew install python3 wget git git-lfs
$ git lfs install

	You may need to manually point your system to python3. You can check this by typing python in the command line and seeing if it is running python3. At this time, RiboPipe only works when Python3 is set as the default. If it is not, do the following:

$ echo "alias python="python3" >> ~/.bash_profile

	Download Conda [https://www.anaconda.com/download/#macos], a package manager, for your operating system. Double click the .pkg file if on MacOS, the .exe file on Windows, or follow these instructions [https://conda.io/docs/user-guide/install/linux.html#install-linux-silent] on Linux.

	Download RiboPipe dependencies via conda:

$ conda install -y -c bioconda setuptools fastqc fastx_toolkit htseq picard samtools hisat2 star bedtools deeptools scipy plastid pandas numpy matplotlib seaborn pysam=0.14

	Install RiboPipe dependencies via pip (should have come pre-installed with python3.4 or greater):

$ pip install multiqc

	Download RiboPipe:

$ git clone https://github.com/RiboPipe/ribopipe.git
$ cd ribopipe
$ cd python setup.py install

	Or, to download specific version:

$ tag='v0.1.4-beta'
$ wget https://github.com/RiboPipe/ribopipe/archive/$tag.zip
$ unzip ribopipe-${tag:1}.zip
$ mv ribopipe-${tag:1} ribopipe
$ cd ribopipe
$ cd python setup.py install

	At the end of the installation instructions, an installation location will be given. Add this to your $PATH:

...
Installing ribopipe script to /Users/$USERNAME/anaconda3/bin

Installed /Users/$USERNAME/anaconda3/lib/python3.6/site-packages/RiboPipe-0.1.5b0-py3.6.egg
Processing dependencies for RiboPipe==0.1.5b0
Finished processing dependencies for RiboPipe==0.1.5b0

$ echo "export PATH='/Users/$USERNAME/anaconda3/bin:$PATH' >> ~/.bash_profile

	Test installation:

$ ribopipe --help

HPC Installation

See hpc_install.sh in the resources [https://github.com/RiboPipe/ribopipe/tree/master/resources] folder for interactive script. While the resource manager can install these for you, we will show you how to manually install all dependencies. These instructions may vary slightly from HPC to HPC.

	Remove all pre-loaded software:

$ module purge

2) Install brew and related dependencies:
Install python3, wget, git, and git-lfs if not already done. You can check in command line by typing in the name of the package and checking if your system recognizes the package name.

$ sh -c "$(curl -fsSL https://raw.githubusercontent.com/Linuxbrew/install/master/install.sh)"
$ echo "export PATH='$(brew --prefix)/bin:$(brew --prefix)/sbin'":'"$PATH"' >> ~/.bash_profile
$ brew install python3 wget git git-lfs
$ git lfs install

	You may need to manually point your system to python3. You can check this by typing python in the command line and seeing if it is running python3. At this time, RiboPipe only works when Python3 is set as the default. If it is not, do the following:

$ echo "alias python="python3" >> ~/.bash_profile

	Install anaconda (instructions retrieves most recent version as of time of writing):

$ wget https://repo.anaconda.com/archive/Anaconda3-5.3.0-Linux-x86_64.sh
$ chmod 700 Anaconda3-5.3.0-Linux-x86_64.sh
$./Anaconda3-5.3.0-Linux-x86_64.sh -b -p $HOME/.local/bin -s
$ export PATH="/uufs/chpc.utah.edu/common/home/$USER/.local/bin:$PATH"
$ conda install -y -c bioconda setuptools fastqc fastx_toolkit htseq picard samtools star bedtools deeptools scipy plastid pandas numpy matplotlib seaborn pysam=0.14

	Install pip related dependencies (should have come pre-installed with python3.4 or greater):

$ pip install multiqc

	To download current repository:

$ git clone https://github.com/RiboPipe/ribopipe.git
$ cd ribopipe
$ python setup.py install --prefix ~/.local

	Or, to download specific version

$ tag='v0.1.4-beta'
$ wget https://github.com/RiboPipe/ribopipe/archive/$tag.zip
$ unzip ribopipe-${tag:1}.zip
$ mv ribopipe-${tag:1} ribopipe
$ cd ribopipe
$ cd python setup.py install --prefix ~/.local

	At the end of the installation instructions, an installation location will be given. Add this to your $PATH:

...
Installing ribopipe script to /uufs/chpc.utah.edu/common/home/$USER/.local/bin

Installed /uufs/chpc.utah.edu/common/home/$USER/.local/lib/python3.5/site-packages/RiboPipe-0.1.5b0-py3.5.egg
Processing dependencies for RiboPipe==0.1.5b0
Finished processing dependencies for RiboPipe==0.1.5b0

$ echo "export PATH='/uufs/chpc.utah.edu/common/home/$USER/.local/bin:$PATH' >> ~/.bash_profile

	Test installation:

$ ribopipe --help

Test Installation

To test installation, run the following command:

$ ribopipe riboseq -i /path/to/ribopipe/test/ -o /path/you/create/ -r yeast -e ingolia_2015 \
-p STAR -a CTGTAGGCACCATCAAT --platform ILLUMINA --count_cutoff 32 \
-s a_wild-type_DED1_replicate_1_15_deg c_ded1-cs_replicate_1_15_deg

If no errors are produced by the output, the installation was successful.

Additional Help

Manually installing a package:

Sometimes a package may need to be manually installed. In these cases, a pattern as follows may be used (example given is loading on HPC).

$ wget https://github.com/simon-anders/htseq/archive/release_0.11.0.zip
$ unzip htseq-release_0.11.0.zip
$ rm htseq-release_0.11.0.zip
$ cd htseq-release_0.11.0
$ python setup.py install --prefix ~/.local
$ cd ../
$ echo "export PATH='/uufs/chpc.utah.edu/common/home/$USER/.local/bin:$PATH' >> ~/.bash_profile"

Or…

$ git clone https://github.com/simon-anders/htseq.git
$ cd htseq
$ python setup.py install --prefix ~/.local
$ cd ../
$ echo "export PATH='/uufs/chpc.utah.edu/common/home/$USER/.local/bin:$PATH' >> ~/.bash_profile"

Getting publicly available raw data from GEO:

Raw data from previous studies that have been made publicly available can be accessed through the GEO database [https://www.ncbi.nlm.nih.gov/geo/]

Please see this example script [https://github.com/RiboPipe/ribopipe/blob/master/resources/run_riboseq_GSE66411_test.sh] for examples of how to retrieve this data. This thread [https://www.biostars.org/p/111040/] is also helpful.

Quickstart

To do a full install on a local machine or HPC, see the Installation page.

Singularity

For a faster way to get started, consider using a Singularity image for RiboPipe, hosted here [https://github.com/RiboPipe/ribopipe-singularity].

1) Singularity [https://www.sylabs.io/docs/] offers a fast, reproducible way of running RiboPipe where all dependencies and OS are bundled into a single disk image. These singularity “containers” are widely used in cloud computing.
Download [https://www.sylabs.io/guides/3.0/user-guide/quick_start.html#quick-installation-steps] if you do not already have it (must be on a Linux OS). Often, cloud computing environments come with this software pre-installed.

	Download a RiboPipe singularity container:

$ singularity pull library://sylabsed/linux/ribopipe

	Run Ribopipe:

$ raw_data=/path/to/raw/data
$ output_data=/path/to/output/data
$ singularity exec ribopipe.sif riboseq -i $raw_data -o $output_data ...

Local

	Move raw data to directory of choice

	Create empty output directory

	Run ribopipe:

$ raw_data=/path/to/raw/data
$ output_data=/path/to/output/data
$ ribopipe riboseq -i $raw_data -o $output_data ...

	Collect raw_counts.csv output in $output_data/assembly/counts and edit sample_info.csv [https://github.com/RiboPipe/ribopipe/blob/master/resources/diffex_template.csv]

	Run diffex:

$ ribopipe_path=/path/to/ribopipe
$ ribopipe diffex -i $output_data/assembly/counts/raw_counts.csv -d $ribopipe_path/resources/sample_info.csv -o output_name --type riboseq

HPC

1) Modify hpc_run_template.sh in the resources [https://github.com/RiboPipe/ribopipe/tree/master/resources]
folder for an example script for submitting the pipeline job to the HPC and make sure dependencies
listed in this script are on the HPC system, else they need to be locally installed
2) Run the script by executing the following:

$ sbatch hpc_run_template.sh

If you want the slurm output file to be sent to the SLURM directory to avoid storage space issues on your interactive node, then in the #SBATCH -o slurmjob-%j line, replace it with the path to your SLURM directory:

$ #SBATCH -o /scratch/general/lustre/INPUT_USER_ID_HERE/slurmjob-%j

General Usage

The purpose of RiboPipe is to automate the alignment, quality control, and initial analysis of ribosome profiling and other short, single-end read data. It is intended that
input data is a directory of .fastq formatted files. However, when using the intermediate submodules, such as align or quality, input will vary and is explicated
in the --help menu for each submodule.

RiboPipe was created with the novice bioinformatician in mind, and the documentation written assuming no background in using Command Line or programming. As such, instructions
have been created with as much detail as possible. Additionally, `walkthrough videos <>`_ are available. In cases where RiboPipe is being used on a cloud computing cluster, or
Linux machine with Singularity installed, a singularity container image can be used to avoid the installation process. Additionally, alignment references have been created for a
variety of model organisms using current builds to help users avoid this step. Details on how to incorporate a newly created reference not already provided within the RiboPipe
infrastructure can be found here.

RiboPipe can be run essentially from beginning to end as a pipeline, or as individual submodules. We will describe each option in detail below.

Important File Naming Conventions

In order for many of the RiboPipe functions to perform properly and for the output to be reliable after alignment (except for generation of a raw counts table), file naming conventions must be followed.

	Download your raw sequence data and place in a folder – this folder should contain all the sequence data and nothing else.

	Make sure files follow a pattern naming scheme. For example, if you had 3 genetic backgrounds of ribosome profiling data, the naming scheme would go as follows:

ExperimentName_BackgroundA_FP.fastq(.qz)
ExperimentName_BackgroundA_RNA.fastq(.qz)
ExperimentName_BackgroundB_FP.fastq(.qz)
ExperimentName_BackgroundB_RNA.fastq(.qz)
ExperimentName_BackgroundC_FP.fastq(.qz)
ExperimentName_BackgroundC_RNA.fastq(.qz)

	If the sample names are replicates, their sample number needs to be indicated.

	If you want the final count table to be in a particular order and the samples ordered that way are not alphabetically, append a letter in front of the sample name to force this ordering.

ExperimentName_a_WT_FP.fastq(.qz)
ExperimentName_a_WT_RNA.fastq(.qz)
ExperimentName_b_exType_FP.fastq(.qz)
ExperimentName_b_exType_RNA.fastq(.qz)

	If you have replicates:

ExperimentName_a_WT_1_FP.fastq(.qz)
ExperimentName_a_WT_1_RNA.fastq(.qz)
ExperimentName_a_WT_2_FP.fastq(.qz)
ExperimentName_a_WT_2_RNA.fastq(.qz)
ExperimentName_b_exType_1_FP.fastq(.qz)
ExperimentName_b_exType_1_RNA.fastq(.qz)
ExperimentName_b_exType_2_FP.fastq(.qz)
ExperimentName_b_exType_2_RNA.fastq(.qz)

	If you are just running RNAseq files through the pipeline, you only need the RNA samples in your input directory and specify the rnaseq module:

ExperimentName_a_WT_1_RNA.fastq(.qz)
ExperimentName_a_WT_2_RNA.fastq(.qz)
ExperimentName_b_exType_1_RNA.fastq(.qz)
ExperimentName_b_exType_2_RNA.fastq(.qz)

ribopipe rnaseq -i input_directory ...

riboseq module

Pipeline for handling raw ribosome profiling sequence data. Runs quality and adaptor trimming, alignment, quality control, and formatting on a directory of raw ribosome profiling
sequence data.

The riboseq module can be run as follows:

$ ribopipe riboseq -i $DATA_PATH/raw_ingolia/ -o $DATA_PATH/out_ingolia/ -r yeast -e ingolia_2015 \
 -s a_WT_DED1_1_15deg b_WT_DED1_2_15deg c_ded1_cs_1_15deg d_ded1_cs_2_15deg \
 e_WT_DED1_1_37deg f_WT_DED1_2_37deg g_ded1_ts_1_37deg h_ded_ts_2_37deg \
 i_WT_TIF1_1_30deg j_WT_TIF1_2_30deg k_tif1_ts_1_30deg l_tif1_ts_2_30deg \
 m_WT_TIF1_1_37deg n_WT_TIF1_2_37deg o_tif1_ts_1_37deg p_tif1_ts_2_37deg \
 -p HISAT2 -a CTGTAGGCACCATCAAT --platform ILLUMINA --count_cutoff 32

An explanation of the riboseq submodule arguments can be found in the following tables:

riboseq required arguments

	Argument

	Description

	-i INPUT, --input INPUT

	Specify full PATH to input directory

	-o OUTPUT, --output OUTPUT

	Specify full PATH to output directory

	-r <yeast>, <human>, <mouse>, --reference <yeast>, <human>, <mouse>

	Specify model organism used for experiments. Pipeline will align a current, curated reference

	-e <string>, --experiment <string>

	Provide experiment name to prepend to output files

	-s <string> [<string> ...], --samples <string> [<string> ...]

	Space delimited list of samples in order. If replicates are included, indicate number in sample name to delineate.

	-a <string> [<string> ...], --adaptor <string> [<string> ...]

	Sequence of 3’ linker (only supports one 3’ linker currently) (default: AACTGTAGGCACCATCAAT). If no adaptor was used, specify None’

riboseq optional arguments

	Argument

	Description

	-m <int>, --max_processors <int>

	Number of max processors pipeline can use for multiprocessing tasks (default: No limit)

	-f, --footprints_only

	Select this option if ONLY providing raw footprint sequence data

	--min_overlap <integer>

	Minimum number of bases that must match on a side to combine sequences for rrna_prober

	-p <HISAT2>, <STAR>, --program <HISAT2>, <STAR>

	Alignment software to be used to align reads to reference (default: STAR)

	--read_length_min <int>

	Minimum read length threshold to keep for reads (default: 11)

	--read_length_max <int>

	Maximum read length threshold to keep for reads (default: 50)

	--read_quality <int>

	PHRED read quality threshold (default: 28)

	--platform <SANGER>, <ILLUMINA>

	Sequencing platform used (default: ILLUMINA)

	--full_genome

	Add this option to map reads to full genome. If not given, will not count any read mapping to the first 45 nt of transcripts for ribosome profiling

	--count_cutoff <int>

	Minimum counts threshold. Will remove any row in the final count tables if any sample does not meet this cutoff threshold

Additional information:

-s, --samples: For ribosome profiling, do not differentiate between footprint and RNA samples.

--full_genome: It is recommended to NOT include this option as ribosome profiling data for this region is often unreliable.

Follow up with the diffex submodule for differential expression analysis.

rnaseq module

Similar to the riboseq module, but tuned for small RNAseq (i.e. anything single-end under 100 bps). It is expected that in the future, RiboPipe will be able to perform
automated paired-end and genome sequencing assembly and alignment.

The rnaseq module can be run as follows:

$ ribopipe rnaseq -i $DATA_PATH/raw_dang_berger/ -o $DATA_PATH/out_dang_berger/ -r yeast -e dang_berger_2014 \
 -s WT_NR_A WT_NR_B WT_CR_A WT_CR_B \
 -p HISAT2 -a TGGAATTCTCGGGTGCCAAGG --platform ILLUMINA --replicates

An explanation of the riboseq submodule commands can be found in the following tables:

rnaseq required arguments

	Argument

	Description

	-i INPUT, --input INPUT

	Specify full PATH to input directory

	-o OUTPUT, --output OUTPUT

	Specify full PATH to output directory

	-r <yeast>, <human>, <mouse>, --reference <yeast>, <human>, <mouse>

	Specify model organism used for experiments. Pipeline will align a current, curated reference

	-e <string>, --experiment <string>

	Provide experiment name to prepend to output files

	-s <string> [<string> ...], --samples <string> [<string> ...]

	Space delimited list of samples in order. If replicates are included, indicate number in sample name to delineate.

	-a <string> [<string> ...], --adaptor <string> [<string> ...]

	Sequence of 3’ linker (only supports one 3’ linker currently) (default: AACTGTAGGCACCATCAAT). If no adaptor was used, specify None’

rnaseq optional arguments

	Argument

	Description

	-m <int>, --max_processors <int>

	Number of max processors pipeline can use for multiprocessing tasks (default: No limit)

	--replicates

	Select this option if samples are replicates (do not use if 3+ replicates).

	-p <HISAT2>, <STAR>, --program <HISAT2>, <STAR>

	Alignment software to be used to align reads to reference (default: STAR)

	--read_length_min <int>

	Minimum read length threshold to keep for reads (default: 11)

	--read_length_max <int>

	Maximum read length threshold to keep for reads (default: 50)

	--read_quality <int>

	PHRED read quality threshold (default: 28)

	--platform <SANGER>, <ILLUMINA>

	Sequencing platform used (default: ILLUMINA)

	--full_genome

	Add this option to map reads to full genome. If not given, will only map reads to transcripts.

	--count_cutoff <int>

	Minimum counts threshold. Will remove any row in the final count tables if any sample does not meet this cutoff threshold

Additional information:

--replicates: Make sure when passing the argument to list samples these are sorted so replicates are next to each other in this list

Follow up with the diffex submodule for differential expression analysis.

trim module

Perform only trimming and quality control steps, outputting general read information. Will output trimmed reads ready for alignment.

The trim module can be run as follows:

$ ribopipe trim -i $DATA_PATH/input_files/ -o $DATA_PATH/output_files/ \
 -a TGGAATTCTCGGGTGCCAAGG --platform ILLUMINA

An explanation of the trim submodule commands can be found in the following tables:

trim required arguments

	Argument

	Description

	-i INPUT, --input INPUT

	Specify full PATH to input directory

	-o OUTPUT, --output OUTPUT

	Specify full PATH to output directory

	-a <string> [<string> ...], --adaptor <string> [<string> ...]

	Sequence of 3’ linker (only supports one 3’ linker currently) (default: AACTGTAGGCACCATCAAT). If no adaptor was used, specify None’

trim optional arguments

	Argument

	Description

	-m <int>, --max_processors <int>

	Number of max processors pipeline can use for multiprocessing tasks (default: No limit)

	--read_length_min <int>

	Minimum read length threshold to keep for reads (default: 11)

	--read_length_max <int>

	Maximum read length threshold to keep for reads (default: 50)

	--read_quality <int>

	PHRED read quality threshold (default: 28)

	--platform <SANGER>, <ILLUMINA>

	Sequencing platform used (default: ILLUMINA)

align module

Perform only alignment of input files – assumes files have already been trimmed if required. Will output alignment files and genome browser compatible files.

The align module can be run as follows:

$ ribopipe align -i $DATA_PATH/input_files/ -o $DATA_PATH/output_files/ -r yeast -e align_only_test \
 -s sample1_FP sample1_RNA sample2_FP sample2_RNA
 -a TGGAATTCTCGGGTGCCAAGG --platform ILLUMINA

An explanation of the align submodule commands can be found in the following tables:

align required arguments

	Argument

	Description

	-i INPUT, --input INPUT

	Specify full PATH to input directory

	-o OUTPUT, --output OUTPUT

	Specify full PATH to output directory

	-r <yeast>, <human>, <mouse>, --reference <yeast>, <human>, <mouse>

	Specify model organism used for experiments. Pipeline will align a current, curated reference

	-e <string>, --experiment <string>

	Provide experiment name to prepend to output files

	-s <string> [<string> ...], --samples <string> [<string> ...]

	Space delimited list of samples in order. If replicates are included, indicate number in sample name to delineate.

	t <riboseq>, <rnaseq>, --type <riboseq>, <rnaseq>

	Sequencing type – riboseq for ribosome profiling or rnaseq for single-end short read sequence data.

align optional arguments

	Argument

	Description

	-m <int>, --max_processors <int>

	Number of max processors pipeline can use for multiprocessing tasks (default: No limit)

	-p <HISAT2>, <STAR>, --program <HISAT2>, <STAR>

	Alignment software to be used to align reads to reference (default: STAR)

	--full_genome

	Add this argument if you wish to align to the full genome. See notes in riboseq and rnaseq sections above for more information.

	--count_cutoff <int>

	Minimum counts threshold. Will remove any row in the final count tables if any sample does not meet this cutoff threshold

quality module

Takes a table of raw counts generates paired scatter plots.

The quality module can be run as follows:

$ ribopipe quality -i $DATA_PATH/raw_counts.csv -o $DATA_PATH/output_location/ \
 -t riboseq

An explanation of the quality submodule commands can be found in the following tables:

quality required arguments

	Argument

	Description

	-i INPUT, --input INPUT

	Input table (must be .csv file) of raw counts

	-o OUTPUT, --output OUTPUT

	Specify full PATH to output directory

	-t <riboseq>, <rnaseq>, --type <riboseq>, <rnaseq>

	Sequencing type – riboseq for ribosome profiling or rnaseq for single-end short read sequence data.

Additional information:

Table must have samples set as columns and must be ordered as sample1_FP, sample1_RNA, sample2_FP, sample2_RNA, etc. or as sample1_rep1_RNA, sample1_rep2_RNA, sample2_rep1_RNA, sample2_rep2_RNA.

rrna_prober module

As the bulk of total cellular RNA consists mostly of ribosomal RNA that is often not of interest and crowds out measurement of other RNAs, an rRNA depletion step is commonly performed before
creating a cDNA sequencing library. Several commercial kits are available that can effectively deplete samples of full length rRNAs. However, inherent in ribosome profiling protocols, samples are
treated with an RNase, which degrades full length rRNAs, making them more difficult to deplete before creating the cDNA library. One way to better deplete these rRNA fragments in ribosome profiling
samples is to create biotinylated RNA probes for overrepresented rRNA fragments to extract these fragments (see this paper [https://www.ncbi.nlm.nih.gov/pubmed/28579404] for a recent discussion).
rrna_prober automates the identification of overrepresented species and outputs a table with these sequences ordered by abundance for ease of probe generation. This table is output in stdout
in this module, or as a txt file in the highlights/ output folder when running the full riboseq submodule.

The rrna_prober module can be run as follows:

$ ribopipe rrna_prober -i $DATA_PATH/sample1.zip $DATA_PATH/sample2.zip ... \
 -o $DATA_PATH/output_location/

An explanation of the rrna_prober submodule commands can be found in the following tables:

rrna_prober required arguments

	Argument

	Description

	-i <string> [<string> ...], --input <string> [<string> ...]

	Space delimited list of zipped files (include full paths to these files)

	-o <string>, --output <string>

	Output file name to write output to

gene_dictionary module

diffex module

truncate module

Data Output

Running riboseq or rnaseq will output all intermediate and final data files in a tree structure as seen below:

[image: ../_images/ribopipe_overview.png]

Advanced Usage

Creating and Implementing Reference

Index

Building References

Current curated reference files for compatible alignment programs are included
when installing RiboPipe for S. cerevisiae only due to file hosting size limits.
In order to use organisms other than yeast with RiboPipe, sub-modules are
included that will generate these curated reference files formatted for
compatibility with RiboPipe.

Generating Curated Reference

Currently, curated references compatible with RiboPipe can be generated for the
following model organisms:
Homo sapiens (STAR)

RiboPipe is easily adaptable to allow curation of other organisms as the need
arises. Future updates will allow for increased breadth of model organisms.

In order to generate these references, follow the example below:

	Create a directory where ever convenient that will be used to store references:

$ cd ~/references

2) Run RiboPipe’s curate sub-module, specifying references directory
created in previous step (or previously created for another curated reference):

$ ribopipe curate -l /path/to/reference/ -p STAR -r human -c 16

If a model organism for a compatible alignment software is not available, please
contact us and we can aid in generating a different curated reference file.

Using a Curated Reference with RiboPipe

Once a curated reference has been generated, slightly different parameters must be
used with RiboPipe’s riboseq and rnaseq sub-modules.

Provide the -c or --custom flags
Provide the full path to the reference folder with the -r or --reference flags,
such as in the example below:

$ ribopipe riboseq -i /path/to/input -o /path/to/output ... \
-c -r /scratch/general/lustre/u0690617/references/human_reference_star

If using alignment software other than STAR, the -p or --program
flags still need to be provided with the appropriate software name

 _static/file.png

_static/minus.png

_static/down.png

_static/ribopipe.png

_static/plus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 RiboPipe: An assembly and analysis pipeline for sequencing data

 		
 Overview

 		
 Background

 		
 Installation

 		
 MacOS Installation

 		
 HPC Installation

 		
 Test Installation

 		
 Additional Help

 		
 Manually installing a package:

 		
 Getting publicly available raw data from GEO:

 		
 Quickstart

 		
 Singularity

 		
 Local

 		
 HPC

 		
 General Usage

 		
 Important File Naming Conventions

 		
 riboseq module

 		
 Additional information:

 		
 rnaseq module

 		
 Additional information:

 		
 trim module

 		
 align module

 		
 quality module

 		
 Additional information:

 		
 rrna_prober module

 		
 gene_dictionary module

 		
 diffex module

 		
 truncate module

 		
 Data Output

 		
 Advanced Usage

 		
 Creating and Implementing Reference

_images/riboseq_overview.png
Ribosome rRNA Library
Footprint Isolation Depletion Preparation

S
DEL. e~y
“,(no I~

Cell Lysis

_static/ajax-loader.gif

_images/ribopipe_overview.png
— raw_meta_data.txt

—— trimmed_filename.fastq

file_name_norrna.fastq
—— file_name.sam
file_name_sorted.sam
file_name_counts.csv

file_name_counts.csv

compiled_counts.csv

—— file_name_sorted.bam

read_size_distribution.pdf)
file_name_sorted.bam.bai

periodicity_analysis.pdf
meta_ORF_analysis.pdf
correlation_scatters.pdf

rrna_prober_output.txt file name sorted.bed

—— file_name_sorted.bw

